
Turbulent Axial Odometer Model

Michael E. Olsen∗

NASA Ames Research Center, Moffett Field, CA 94035

Randolph P. Lillard†

NASA Johnson Space Center, Houston, TX 77058

A Galilean-invariant field equation is proposed and tested on standard turbulence model
test cases. The field equation provides an additional non-dimensional outer scale which allows
the turbulence models to reproduce the axial normal stress increase with Reθ seen in high
Reynolds numbers experiments. The field equation provides a Reynolds number for every
point based on the length of turbulent flow upstream of that point in the domain. This outer
scale equation can be considered an odometer that gives a length scale conjectured to be related
to the large streamwise structures that are seen in turbulent flow and that require run length to
develop. A new RANS model using this additional scale is able to match the Reynolds number
variation of the normal stresses seen at highReynolds number. Furthermore, the good attached
flow prediction capabilities of current RANS models appears to be attained. Using this scale
equation, the entire Reynolds-stress state appears to be predicted correctly, over a large run
length Reynolds number range such as experienced in aircraft design.

I. Nomenclature

List of Symbols
ui ensemble mean velocity in i direction
u′i perturbation velocity in i direction, ui − ui
k turbulent kinetic energy, 1

2 ρu′iu
′
i

νT kinematic eddy viscosity
ε homogeneous turbulent dissipation
Ri j second moment velocity tensor (Reynolds-stress), u′iu

′
j

Ti jk third moment velocity tensor, u′iu
′
ju
′
k

Qi jkl fourth moment velocity tensor, u′iu
′
ju
′
k
u′
l

Ro outer scale variable
RT turbulent Reynolds number, k2/νε
ReL run length Reynolds number based on distance L, u∞L/ν∞
L flat plate total length
c airfoil chord
x axial distance, tensor index 1
y spanwise distance, tensor index 2
z wall normal distance, tensor index 3
lp turbulent run length
u∞ free stream velocity
T∞ free stream static temperature (K)
a∞ free stream isentropic speed of sound
M∞ free stream Mach number, u∞

a∞

τw wall shear, µ∂zu|w
ψ turbulent normal stress difference
ΨL turbulent normal stress difference minimum
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ΨR turbulent normal stress difference slope
A6 turbulent time scale ratio (log layer nominal 2S13/ω)
α Wilcox dissipation parameter
RNN wall normal normal stress parameter
Rm characteristic odometer Reynolds number parameter
K log layer (design) TKE in wall units
β∗ dissipation parameter (= εω/k)
β isotropic decay parameter
nD isotropic decay rate (β∗/β)
A8 Von Karman constant adjustment parameter
σω turbulent frequency gradient diffusion Prandtl number
σt triple product gradient diffusion Prandtl number
σk turbulent kinetic energy gradient diffusion Prandtl number
σr Reynolds-stress gradient diffusion Prandtl number
R+11 axial normal Reynolds-stress
R+33 wall-normal normal Reynolds-stress
R+22 spanwise normal Reynolds-stress
R+13 Reynolds shear stress
uτ friction velocity,

√
τw/ρ

x+3 wall normal distance in wall units, uτ z/ν
ν kinematic viscosity, µ/ρ
µ molecular viscosity
ρ mass density

List of Subscripts
∞ freestream (farfield) conditions
w evaluated at wall

II. Introduction
Reynolds Averaged Navier-Stokes (RANS) Reynolds-stress modeling has a long history, but at the present time

simpler eddy viscosity models using the Boussinesq assumption are still the primary method for turbulent flowfield
predictions for flowfield predictions. At the turn of the twenty-first century, advances in experimental technique provided
new insight into the nature of the Reynolds-stress tensor. While the shear stress and wall normal Reynolds-stress seem
to be characterized by the wall units (uτ =

√
τw/ρ), the axial (R+11) and spanwise (R

+
22) normal Reynolds stresses are not

constant in wall units, but increase with increasing Reθ [1–8]. This creates a conundrum in a standard RANS model, as
the scaling is on an "outer scale" (Reθ ), and not the wall scaling, uτ and wall distance. The relatively recent discovery
of very large elongated structures in turbulent boundary layers has been proposed as a cause [8].

For attached flows, accurate normal stress estimates are not required to obtain accurate pressure and skin friction
predictions, as evidenced by the performance of eddy-viscosity models. However, in separated flows, the inaccurate
normal stress are believed to be part of the cause of the poor predictions for reattachment in separated flows [9–11],
along with poor predictions of the turbulent transport. Furthermore, for almost any model of turbulent transport, poor
estimates of Ri j components will lead to incorrect turbulent transport (∂kTi jk) estimates.

Based on this need for an outer length scale, a new field equation has been developed. The equation is designed to
provide a non-dimensional quantity that is a Reynolds number formed by the length of streamlines continuously inside
turbulent flow, the square root of the turbulent kinetic energy, and the molecular velocity (

√
klp/ν). The equation is

Galilean invariant, and when coupled with a modified version of the triple product model [12] provides a reasonable
estimate of the axial Reynolds stress variations seen in experiment [4, 6–8]—something that no other current turbulence
model is capable of.
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A. TAO field equation description
As a novel field equation is proposed here, a quick look at the conceptual origin, properties, and solutions of this

new field equation is in order. The equation is claimed to be Galilean-invariant (a primary requirement for anything
claiming to be a physical law at non-relativistic speeds), so there should be a physical entity whose properties do not
depend on the coordinate system involved. In this case, the underlying reality is a streamline length. Essentially, the
field equation acts like an odometer which increases as long as the streamline remains within a turbulent field, hence
the name—Turbulent Axial Odometer (TAO). One further design decision in this field equation is that "odometers"
along adjacent streamlines should synchronize themselves (with a gradient diffusion term) so that all odometers within a
turbulent boundary layer should yield roughly the same length (or scale) estimate at the same axial location. A final
design decision in crafting this equation, one that fits with its characterization as an odometer, is that the field variable
(odometer reading) should reset itself towards zero when the streamline is no longer in a turbulent region.

B. Building a Field Equation Odometer
Let us start by considering an equation that should give a running distance along a streamline (lp ) Eq. (1a),

ρ∂t (lp) + ρui∂i(lp) = ρ(uiui)
1
2 (1a)

That this equation has this property can seen by considering steady uniform flow, and simplifying,

ρui∂i(lp) = ρ(uiui)
1
2

which implies, for axial flow, say in the x1 direction

∂1(lp) = 1

and integrating

lp = x1

where x1 is assumed to be zero at the start of the streamline. By integrating this equation (essentially by a method of
characteristics) from the outer boundaries into the interior of the flowfield, the value of lp will simply give the arclength
of the streamline through that point in space from the point of origin at the inflow boundary. So now, we have a field
equation that has a field variable equal to the length of the streamline from the boundary inflow point of the streamline
to that point—an odometer.

The next step is to take this simple result and bend it to the purpose of obtaining an outer scale. This outer scale
needs, for our purposes, to be a non-dimensional number, and multiplying lp by

√
k/ν leaps to mind. For a flat plate, k is

very nearly constant in the log layer, and very small away from it. In general, in thin shear layer flows, the central shear
region is the only place where k is appreciable, and outside of this region k is small and decreasing along streamlines,
since there is no production and turbulent dissipation continues to turn k into increased internal energy.

∂t (ρRo) + ∂i(ρuiRo) = ρ
√

uiui

√
k
ν

(1b)

At this point, the equation is purely hyperbolic, and provides a non-dimensional Reynolds number whose length is
the streamline length weighted by

√
k/ν. The next term to be added is a diffusion term to synchronize the odometers of

adjacent streamlines so that in a wall bounded shear layer the odometer values are consistent across the entire boundary
layer at that axial location.

∂t (ρRo) + ∂i(ρuiRo) = ρ

√
uiui
√

k
ν

+ ∂i ((µ + σt µt )∂iRo) (1c)

After some experimentation, this non-dimensional variable seemed to be viable as an option, allowing a reasonable
match of the normal stress anisotropy variations in the flat plate when used as part of a turbulence model. However,
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further experimentation on separated flows made the need for a destruction term apparent. To accomplish this, a
destruction (odometer reset) term was added to the field equation, −ωRo/(1 + RT ), which causes the Ro term to reset
itself to zero if the streamline leaves turbulent flow (which is characterized by high RT ).

∂t (ρRo) + ∂i(ρuiRo) = ρ

√
uiui
√

k
ν

+ ∂i ((µ + σt µt )∂iRo) −
ρωRo

(1 + RT )
(1d)

The Ro variable is determined by Eq. (2), the new equation for the outer scale :

∂t (ρRo) + ∂i(ρuiRo) = ρ

√
uiui
√

k
ν

+ ∂i ((µ + σt µt )∂iRo) −
ρωRo

(1 + RT )
(2)

The boundary conditions for this equation are that at inflow boundaries, Ro is zero, and at walls ∂nRo = 0. Outflow
boundary conditions are simple extrapolation.

The field variable from this equation (Ro) is used to adjust the field equations of the associated turbulence model
(see Section III) to match the experimental variation of the normal axial Reynolds-stress. Note that this equation uses
the values of k , νT and RT from the underlying turbulence model, which have predictable functional forms for most
thin shear layer flows. This means that as long as the model consistently gives correct estimates of these variables, the
Ro returned from this equation is relatively model-independent for models that consistently predict k, νT , and RT .

C. Odometer Solutions
Before showing the results of the odometer-enhanced turbulence model, we will show the character of the solutions

of the Ro equation itself for two representative flowfields. The first flowfield discussed is, naturally enough, the flat plate.

1. Flat Plate
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(a) Ro (outer scale variable) profiles along flat plate
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(b) Turbulent kinetic energy profiles along flat plate

Fig. 1 Boundary layer profiles of k and Ro for the flat plate

Profiles of the solutions of the scale equation, Ro, are shown in Fig. 1a. The corresponding k profiles are shown
in Fig. 1b. The k profiles give an indication where the turbulent flow is in this flowfield—close to the wall. The Ro

profiles are flat in the corresponding region, and drop to small values away from the wall where the streamlines do not
enter the region of turbulent flow.

The Ro solutions have the desired character—from the edge of the turbulent region to the wall, Ro is very nearly
constant. In the region outside the turbulent wall region, the Ro is very small. Looking at the value of Ro in the turbulent
region at the three axial locations plotted in Fig. 1a, Ro does roughly scale with the run length—again consistent with
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the design of the outer scale equation. For this particular boundary value problem, the run length of the streamline
inside the turbulent region can be easily estimated and the equation for Ro is working exactly as intended.

However, the utility of this field equation will require that it act in a similar manner on far more complex configurations.
The next flowfield to be shown here gives an idea of how the model would work on flowfields more representative of
those encountered in actual aerospace vehicle design or analysis.

D. Isolated Airfoil: NACA 4412

(a) 10c outer boundary

(b) 100c outer boundary

Fig. 2 Ro solution on 2D airfoil
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(b) Turbulent kinetic energy

Fig. 3 Boundary layer profiles at three x/c locations for the airfoil, (DB is farfield boundary distance)

The freestream chord Reynolds number for this particular solution is u∞c/ν∞ = 1.5 × 106, and the freestream Mach
number is 0.2. However, this flowfield has external boundaries far from the turbulent wall bounded field. The same
set of boundary conditions described above for the flat plate are used for the airfoil. On inflow faces, Ro is set to zero
(Ro = 0). At outflow boundaries, simple extrapolation is used. At walls, the wall normal derivative of Ro is set to zero
(∂nRo = 0).

The behavior of k in the underlying model, which is tuned to match the decay of isotropic turbulence, ensures that
k starts out small and gets smaller as the flow traverses the streamline in the absence of mean strain. For this case,
solutions obtained on two different grid systems are compared to assess the sensitivity of the model predictions to
large fractions of the streamline length traversing non-turbulent flow before it reaches the wall bounded turbulent shear
layer. One grid system has external boundaries ten chords away from the airfoil and the other has those boundaries one
hundred chords away.

Figure 2 shows the contours of Ro of these two solutions, with most of the external regions trimmed away. As can
be seen, even though the 100c solution has much further upstream length for streamlines to reach the airfoil, the Ro

values look very similar, and the regions upstream and away from the turbulent region are regions of small Ro, exactly
as one would want. In the flowfield where laminar k is small, the outer scale is small. However, near the airfoil where
the flow becomes turbulent near the wall, and in the wake behind the airfoil, the outer scale variable Ro grows with
greater run length.

While the color contours of Ro give a first order assessment of the nature of the solution, it is more instructive to
look at the profiles of Ro over the airfoil. Looking in detail at the upper surface of the airfoil, boundary layer profiles of
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the outer scale variable, Ro, are shown in Fig. 3. The Ro profiles (Fig. 3a) are acting in the manner they were designed
to act—nearly constant within the boundary layer, and dropping to a small number in the outer flowfield. Furthermore,
the Ro solutions are essentially insensitive to the change in external boundary distances.

The corresponding profiles for k (Fig. 3b) are what one might expect, with small differences in the boundary layer
width (more noticeable for smaller x/c) but essentially the same k levels in the wall bounded flow even though the
external k levels are substantially different (though both extremely small). In short, the solutions look very much like
the corresponding solution on the flat plate flowfield, and provide the same sort of run length scaling even when the
starting point of the streamlines is a hundred chords away. Solutions on other more complicated flowfields confirm
that the new field equation is a reasonable outer scale that measures the run length of turbulent flow, weighted by the
variable

√
k which is well correlated to uτ for attached flowfields.

III. Methodology and Turbulence Model Description
This section discusses the details of the solution method used and the overall TAO enhanced turbulence model. The

solution methodology is unchanged from previous work, and the model can be characterized as very similar to previous
Lag-Ti jk models, with the important addition of the outer scale Ro to adjust model parameters to match the variations of
the Reynolds-stress tensor observed experimentally.

A. Computation

1. Grid
The flat plate grid used (Fig. 4) is 513 × 513, with initial wall normal spacing of 10−8L and an initial axial spacing

of 10−4L. The wall normal stretching ratio is less that 1.03, and the axial stretching ratio is less that 1.02. The grid
vertical extent starts at the leading edge at 0.01L, and linearly grows to 0.3L at the trailing edge, very similar to grids
from [10]. The grid is sufficiently fine to allow simulation of this flowfield at axial locations that are less than 0.005L,
which corresponds to a Reynolds number based on run distance and freestream velocity of 500 × 103, nominally the
lowest Reynolds number at which it would be possible to have turbulent flow at normal conditions.

2. Boundary Value Problem Definition
The primary flowfield to be studied is the canonical low Mach number turbulent flat plate. This simulation has

a Reynolds number based on plate length and freestream velocity of 100 × 106, which gives a long region of fully
developed turbulent flow—certainly 90% of the plate length. The simulation Mach number was set to 0.2, yielding an
essentially incompressible flow field without requiring low Mach preconditioning.

The boundary conditions on the plate are viscous, adiabatic wall along z = 0, characteristic boundary conditions
along the inflow plane and upper edge, and simple extrapolation along the exit plane. A detail that is generally not
discussed at any length is the freestream conditions for k and RT =

k
νω . The standard conditions used are to set

k∞ = 1 × 10−6, and ReT = 0.1, which is essentially laminar freestream. The turbulent kinetic energy continues to decay
from the inflow edge, and k and ReT are actually lower for any part of the solution domain without significant shear
strain. This can be thought of as "Flight" conditions, where the atmospheric turbulence is vanishingly small, and this is
the usual boundary condition imposed.

An alternative is to attempt to match the turbulence state existing in a wind tunnel test section, where the grid
turbulence of the last screens in the settling chamber is accelerated through the contraction section, then traverses
down the tunnel at a nearly constant freestream turbulence intensity. This is done by setting k to the desired level, and
ReT ≥ 1000. If a measurement of the decay of k down the test section is available, this can be used to fix ReT , but in
this paper it is set to 1000 for the cases where non-zero freestream turbulence is being simulated. This value gives a
nearly constant freestream k over the length of the plate. Choosing higher levels of ReT gives results that are essentially
similar. Setting the freestream turbulent state in this manner is denoted as "Wind Tunnel" turbulence levels. For this
paper, the standard "Flight" turbulence level boundary values are used.

3. Numerical Method
The code used in this study was a modified version of OVERFLOW 2.2k [13, 14]. The modifications included the

addition of Lag, Lag-Ri j , and TTR models along with the high speed modifications [15]. Matrix dissipation was used
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with smoothing parameters as recommended by earlier studies of high-speed flows with this code [15] with one critical
change. The critical difference in the matrix dissipation smoothing parameters used is that the eigenvalue limiters are
set to zero. Matrix dissipation [16] is appropriate for this flowfield.

The Pulliam-Chaussee diagonal scheme [17], with variable time stepping or a constant Courant number (CFL) and
multigrid was used as the relaxation method. Grid sequencing (called full multigrid in OVERFLOW) was utilized, and
allowed a check on grid convergence as well as drastically reducing the CPU time required to fully converge the results.

Spatial convective terms and diffusion terms were all second-order accurate. For the modeling of the convection
terms of the turbulence models, second-order upwind was used on all the RANS models. The Lag methodology does
require second-order accuracy (or better) since the field equations defining the lagged turbulent variables are a balance
of convection and source with no diffusion terms by design—purely hyperbolic equations to accurately mimic the
history effects so clearly evident in turbulent flow. In the turbulent transport level equations, not all the equations are
purely hyperbolic, but they are all more driven by convection terms than standard one- or two-equation models.

B. Turbulence Model Description
The scale equation has been incorporated into the equation system of Ri j , Ti jk , and Qi jkl models. These models

are based on the Ti jk models described in [11]. Adaptive mesh refinement similar to that described in [18] is used to
eliminate the possibility of truncation error adulterating the solutions used to tune the turbulence models.

The remainder of the model definition follows the previous TTR and Reynolds stress development closely
[10, 12, 19–21] The TAO turbulence model including turbulent transport (Ti jk) terms is:

∂t (ρk) + ∂l (ρulk) =ρ
[
Ri jSi j − β∗kω

]
+ ∂l ((µ + σk µT ) ∂lk) − A4∂l (ρTiil) (3a)

∂t (ρω) + ∂l (ρulω) =αρS2 − βρω2 + ∂l ((µ + σωµT ) ∂lω) (3b)

∂t
(
ρRi j

)
+ ∂l

(
ρulRi j

)
=A0ρω

(
R(eq)i j − Ri j

)
(3c)

∂t
(
ρTi jk

)
+ ∂l

(
ρulTi jk

)
=A0ρω

(
T (eq)
i jk
− Ti jk

)
(3d)

where

T (eq)
i jk
=

A2
A0ω

[
Ti jl∂lUk + Tjkl∂lUi + Tkil∂lUj − Ri j∂lRkl − Rjk∂lRil − Rki∂lRjl

]
+

1
A0ρω

[
∂l

( (
µ + σt µtE

)
∂lTi jk

) ]
(4)

µtE = ρk/ω

P = Ri jSi j
ε = β∗kω

S =

√
2
(
Si jSi j − S2

kk
/3

)
Si j =

1
2

(
∂ui
∂xj
+
∂u j

∂xi

)
Most of the parameters for this model are set by the requirement to retain the equilibrium predictions of the underlying

k-ω 1988 model. The equilibrium Reynolds-stress relation is one of the three described in earlier Reynolds-stress
model work [21], denoted as the “926(Redistribution)” Equilibrium Reynolds-stress relation. This constitutive relation
is most directly related to the explicit algebraic Reynolds-stress models [22–24]. The terminology is borrowed from the
paper introducing this relation [21], and contains production terms which are not the full Reynolds-stress production
terms, but do yield log layer anisotropies consistent with the classic 4:3:2 [25] relation for a constant structure parameter
A1 =

5
3 . These “production” terms (which are actually only redistribution terms, and none of the work terms of actual

production) are

P11 = 2 (kS11/A1 + (R31 Ω31 − R12 Ω12)) (5a)
P22 = 2 (kS22/A1 + (R12 Ω12 − R23 Ω23)) (5b)
P33 = 2 (kS33/A1 + (R23 Ω23 − R31 Ω31)) (5c)
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with corresponding off-diagonal terms

P12 = 2kS12/A1 + (R23Ω31 − R31Ω23 + (R11 − R22)Ω12) (5d)
P23 = 2kS23/A1 + (R31Ω12 − R12Ω31 + (R22 − R33)Ω23) (5e)
P31 = 2kS31/A1 + (R12Ω23 − R23Ω12 + (R33 − R11)Ω31) (5f)

then the equilibrium Reynolds stress is given by:

Ri j
(eq) =

2
3

kδi j −
A1
ω
(Pi j −

1
3
Pδi j) +

∂l
(
(µ + σr µT ) ∂lRi j

)
− A3∂l

(
ρTi jl

)
A0ρω

(6)

The model parameters which are constant for the TAO model in this paper is:

A0 = 1.0 A2 = 1.0 A3 = 1.0 A4 = 1.0
σk = 0.3 σr = 1.0 σt = 1.0 α = 0.04
Rm = 10.0 A8 = 0.6 nD = 1.2 ΨL = 0.5
ΨR = 0.1

In order to provide the needed adjustments to match R+11, in contrast to the previous triple product models, this model
has a variable A1(Ro), which is provided by the following functional system:

ψ = max(ΨL,ΨR ln(1 + Ro/Rm)) (7a)

A6 =
2
3

1 + ψ2

RNN + ψ
(7b)

A1 = ψ/A6 (7c)

K =
1 + ψ2

A6
(7d)

β∗ = ψ/A6 (7e)
β = β∗/nD (7f)

σω =
β/A2

6 − α

KA2
8

(7g)

This functional system (arrived at by an extension of Wilcox’s analysis [26, 27] for eddy viscosity models) provides
a framework where the adjustments are more clearly identified. ψ is roughly the value of R+11 -R

+
33 in the log layer of a

flat plate. RNN (which is a constant parameter in this version) controls the value of R+33 in the log layer. A6 is the ratio
of the mean strain rate and ω (which is constant in the previous models and the underlying k-ω88 model. In order to
obtain R+33 value that better matches experiment (slightly greater than unity, and not a strong function of run length
Reynolds number) and allow R+11 to grow slowly (but unbounded) with Reynolds number, this additional functional
complexity was required. The variables [A6, A8] are not actually used in the model other than to provide [A1, β

∗, β,σω].

IV. Results

A. Flat plate
The initial grid used for assessing the turbulence model parameters is shown in Fig. 4. The freestream conditions

are specified as M∞ = 0.2, ReL = 100 × 106, T∞ = 300K, k∞ = 100 × 10−6, RT = 0.1. Boundary conditions are
adiabatic viscous wall, extrapolation on the downstream edge, and characteristic conditions on the upstream outboard
and upstream edges. The first point of reference for any turbulence prediction method is whether it can predict the flat
plate mean flowfield (Fig. 5). Figure 5b shows the surface shear predictions of the TAO model. The "Fully Turbulent"
results have no imposed laminar region; all equations are integrated over the entire plate length. The "Transitioned"
results have the turbulence production terms zeroed over the front of the plate up to a run length Reynolds number
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Fig. 4 Flat plate grid system
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(a) Axial velocity (Law of the Wall)
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Fig. 5 Skin friction and axial velocity predictions (C-Coles version (κ/A), N-Nagib version(κ/A), M-Marusic
experiment, Reθ values for TAO and experiment)

(ρ∞u∞x/ν∞) of 200× 103. The axial velocity predictions are shown in Fig. 5a. These are shown only for the transitional
solution, as the fully turbulent results are indistinguishable from the transitional results on this graph.

However, the persistence of differences in cf between untripped and tripped solutions, and the "transition" behavior
of this new model (the blue dashed curve in Fig. 5b, which is still rising up to the "Fully Turbulent" curve at Reθ ≈ 500)
are worth noting. The "half measures" turbulence model version [10] had a similar, though more extreme, transitional
behavior. This previous model had a high and constant value of R+11 (≈ 6) in the log layer. It turned out that "Wind
Tunnel" freestream turbulence levels had to be imposed at the inflow in order to get the model to be in a fully turbulent
state at Rex = 1 × 106. It in effect wanted to act as a combined transition and RANS model. When the TAO model
tuning was finished, it did transition (that is, sustain turbulent flow) at Rex = 500 × 103, with "Flight" turbulence levels.
At this point, the simulations with an enforced transition look more plausible in the low Reynolds number regime
(Re+x ≤ 2 × 106) than the "Fully Turbulent" simulations. The differences between predictions of axial velocity (in wall
units) at Rex ≥ 5 × 106 are miniscule, and the biggest difference is the slight lowering of the wall shear. From this point
forward, in the flat plate, only the "Transitioned" results will be shown, although at the Reynolds numbers shown there
is no difference visible at the scale of these plots.

The match is the result of model tuning, but it does show that the TAO model is capable of reproducing these results.
Essentially, it says that the axial velocity profile, including the slope at the wall, is well predicted. The real point of this
new model, prediction of the axial normal Reynolds-stress, is exhibited in Fig. 6. The numbers associated with each
curve in the legend are the value of Reθ for each curve, along with a leading initial denoting the experimental team.
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Fig. 6 Axial normal Reynolds-stress Variations (R+11) compared with experiment (numbers in legend are Reθ )
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Fig. 7 Wall-normal normal Reynolds-stress (R+33) Variations compared with experiment

Again, as in the precursor [12], the region of interest is above the viscous sublayer and buffer layer, z+ > 60.
Numerous experimental results are shown, parameterized by Reθ . It is useful to remember that upstream differences can
persist in experiment—the work of Marusic et al. [28] is a useful reference when evaluating these predictions. Details
of upstream history, such as over-zealous tripping, will affect the outer portion of these profiles, so there is an inherent
fuzziness to the outer edge of the Reynolds-stress profiles. As can be seen in the plots, there is also the usual uncertainty
in difficult measurement conditions, but the agreement in terms of the inner plateau is generally good. The gray curves
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on this figure show the results for the TTR model [10], which is representative of a Ri j model tuned to provide the
classic 4 : 3 : 2 proportions of normal Reynolds-stress in a flat plate boundary layer.

The second improvement made possible by inclusion of the odometer equation is shown in Fig. 7, the wall normal
Reynolds stress. The simultaneous improvement in prediction of R+11 and R+33 means that the entire Reynolds-stress state
in the axial/wall-normal (since the R+13 is also predicted well given that wall shear is matched Fig. 5b). It is this match of
the complete "Mohr’s circle" [29] which was the reason for this enhancement to Reynolds-stress modeling.

In the same way that the turbulent transport terms are more important in a separated flow, the entire Reynolds-stress
tensor becomes important in a separated flow because there is no well defined flow direction. The difference between
R+11 and R+33 , along with R+13 , determine the maximum shear stress, and its direction, in a separated flow. In the same
way that R+11 was predicted below what it should have been, the R+33 was predicted too high, and the difference between
them was shortchanged on both sides. This means that the predicted maximum shear stress in the separated region could
never be as high as it should have been, leading to a decrease in the momentum transfer in the separated region. The
grey curves in this figure are again from the TTR model, which is representative of current Reynolds-stress modeling.

While there is still room for improvement in the R+33 predictions seen in Fig. 7, in the log layer region (where R+11 is
the highest) the R+11 -R

+
33 predictions should be much better predicted in the log region. Another point to keep in mind is

that the vertical scale is very different between Fig. 6 and Fig. 7. The maximum discrepancies in R+33 in Fig. 7 (which
are not in the log layer, but out at the boundary layer edge) are below 0.5, which is very small on the scale of Fig. 6.

Along with obtaining a better prediction of the state of stress, better predicted R+11 , R+33 , R+13 should allow better
turbulent transport predictions. Although it is not a dominant term in the turbulent transport for this flow, there are
experimental results for one of the triple products, in the form of skewness measurements, Su = T111/(R11)

3/2. Figure 8
shows a comparison of the predictions for this ratio for the same Reθ range as the R+11 and R+33 plots. It should be kept
in mind that there is a discrepancy in "boundary layer edge" of the R+11 between experiment and computation, so if
the "edge" is aligned between experiment and computation, the slope is not badly estimated. It is also interesting that
there is a somewhat large δ function spike (at least in the log coordinates of Fig. 8, that is mirrored in the experimental
data (see the lowest points on each of the subfigures, which is an experimental minimum). This is a consequence of
the balancing process at the far boundary layer edge being turbulent transport matching the convection term which is
bringing low turbulence fluid from the freestream into the boundary layer edge.
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Fig. 8 Skewness (T111/(R11)
3/2) compared with experiment

This can be seen in the final plot to round out the exploration of this new model: the turbulent kinetic energy balance,
Fig. 9. These plots extend from deep inside the sublayer to outside the boundary layer edge, shown for three different
values of Rex . The terms are normalized by u3

τ/κx+3 , essentially the log layer production. The actual production (green
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curve) exceeds this value at all three Rex , in the log layer (it exceeds unity on this figure when x+3 > 100). Dissipation
(red curve) is much closer to unity in this region, and as one might expect largely balances production. However, as was
evident in tuning, the modelled turbulent transport (blue curve), ∂kTi jk is not negligible in the log layer. By the same
token, the gradient diffusion (teal curve), ∇ (σk∇k) is a small but finite term in the log layer. Both are transporting
energy out of the log layer into the boundary layer edge and sublayer regions.

As was noted in the earlier, "half measures" paper [10], the place where the triple product term is a balancing one is
at the boundary layer edge. In this region, the ∂kTi jk is balanced by the convection, Dk

Dt . Convection (orange curve) is
providing lower k fluid into the domain at the boundary layer edge, and the turbulent transport (almost certainly by wall
normal transport) is moving high k fluid from the log layer region into the quiescent external flow.
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Fig. 9 Turbulent kinetic energy balance

V. Conclusions
A new field equation that acts as a turbulence odometer has been coupled with an advanced turbulence model to

provide a more accurate prediction of the axial and wall-normal components of the Reynolds-stress tensor. With the
proper coupling, the R+11 , R+33 , and R+13 Reynolds-stress behaviors for flat plate boundary layers are reproduced. Even
the somewhat limited triple product comparisons were consistent with experiment.

The new model with the associated new field equation and flow variable have great promise to provide predictions for
industry-relevant Reynolds numbers. Comparison on more complex flowfields, especially the junction flow experiment,
will enable a possibly large expansion of prediction capability for aircraft design. However, as has been apparent in
simulation of canonical flowfields, a much richer validation data set than available in old data sets will be required to
allow an unambiguous comparison with experiment.

VI. Future Work
Evaluation of the predictions of the TAO model in attached flow so far suggest that the legacy RANS ability

to get good attached flow predictions of cf was retained, as expected. Additional physics were added to the model
predictions—better matching of the full Reynolds-stress tensor, but no harm appears to have been done to one of the
more important roles of RANS models, attached flow drag prediction.

Initial separated flow solutions suggest that better matching of the complete Reynolds-stress tensor improves the
separation predictions, but also suggest that more complete simulation of the experiment is required. For these models,
flow history is more important and simple expedients like adding upstream length to match a boundary layer height
are no longer sufficient to match the actual inflow conditions of the experiment. Velocity profiles and Reynolds-stress
profiles are both now required to match. However, if this provides the ability to predict flowfields that are industry
relevant, it will provide a valuable capability not matched by any other method.
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